Antiapoptotic role of the p38 mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation.
نویسندگان
چکیده
Myocyte enhancer factor 2 (MEF2) is in the MADS (MCM1agamous-deficiens-serum response factor) family of transcription factors. Although MEF2 is known as a myogenic factor, the expression pattern of the MEF2 family of genes (MEF2A-D) in developing brain also suggests a role in neurogenesis. Here we show that transfection with MEF2C, the predominant form in mammalian cerebral cortex, induces a mixed neuronal/myogenic phenotype in undifferentiated P19 precursor cells. During retinoic acid-induced neurogenesis of these cells, a dominant negative form of MEF2 enhances apoptosis but does not affect cell division. The mitogen-activated protein kinase p38alpha activates MEF2C. Dominant negative p38alpha also enhances apoptotic death of differentiating neurons, but these cells can be rescued from apoptosis by coexpression of constitutively active MEF2C. These findings suggest that the p38alpha/MEF2 pathway prevents cell death during neuronal differentiation.
منابع مشابه
Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis.
Myocyte enhancer factor-2 (MEF2) transcription factors are activated by p38 mitogen-activated protein kinase during neuronal and myogenic differentiation. Recent work has shown that stimulation of this pathway is antiapoptotic during development but proapoptotic in mature neurons exposed to excitotoxic or other stress. We now report that excitotoxic (N-methyl-D-aspartate) insults to mature cere...
متن کاملp38 MAP kinase signalling is required for hypertrophic chondrocyte differentiation.
Longitudinal growth of endochondral bones is accomplished through the co-ordinated proliferation and hypertrophic differentiation of growth plate chondrocytes. The molecular mechanisms and signalling cascades controlling these processes are not well understood. To analyse the expression and roles of p38 mitogen-activated protein kinases in this process, we have established a micromass system fo...
متن کاملInactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملIranian crack induces hepatic injury through mitogen-activated protein kinase pathway in the liver of Wistar rat
Objective(s): Iranian crack (IC) is a heroin-based substance manifesting various pathologic side effects. Herein, we aimed to investigate the mechanism of IC-induced liver injuries in Wistar rats. Materials and Methods: Twenty male Wistar rats were randomly divided into two groups: control, and IC (0.9 mg/kg/day/IP, for 30 days). Mitochondrial reactive oxygen species (ROS) production was measur...
متن کاملp38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps.
The extracellular signals which regulate the myogenic program are transduced to the nucleus by mitogen-activated protein kinases (MAPKs). We have investigated the role of two MAPKs, p38 and extracellular signal-regulated kinase (ERK), whose activities undergo significant changes during muscle differentiation. p38 is rapidly activated in myocytes induced to differentiate. This activation differs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 13 شماره
صفحات -
تاریخ انتشار 2000